Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 890
1.
Front Psychiatry ; 15: 1362612, 2024.
Article En | MEDLINE | ID: mdl-38742130

Introduction: Major depressive disorder (MDD) is partially inheritable while its mechanism is still uncertain. Methods: This cross-sectional study focused on gene pathways as a whole rather than polymorphisms of single genes. Deep sequencing and gene enrichment analysis based on pathways in Reactome database were obtained to reveal gene mutations. Results: A total of 117 patients with MDD and 78 healthy controls were enrolled. The Digestion and Dietary Carbohydrate pathway (Carbohydrate pathway) was determined to contain 100% mutations in patients with MDD and 0 mutation in matched healthy controls. Discussion: Findings revealed in the current study enable a better understanding of gene pathways mutations status in MDD patients, indicating a possible genetic mechanism of MDD development and a potential diagnostic or therapeutic target.

2.
Bioconjug Chem ; 35(5): 703-714, 2024 May 15.
Article En | MEDLINE | ID: mdl-38708860

Manganese(II)-based contrast agents (MBCAs) are potential candidates for gadolinium-free enhanced magnetic resonance imaging (MRI). In this work, a rigid binuclear MBCA (Mn2-PhDTA2) with a zero-length linker was developed via facile synthetic routes, while the other dimer (Mn2-TPA-PhDTA2) with a longer rigid linker was also synthesized via more complex steps. Although the molecular weight of Mn2-PhDTA2 is lower than that of Mn2-TPA-PhDTA2, their T1 relaxivities are similar, being increased by over 71% compared to the mononuclear Mn-PhDTA. In the presence of serum albumin, the relaxivity of Mn2-PhDTA2 was slightly lower than that of Mn2-TPA-PhDTA2, possibly due to the lower affinity constant. The transmetalation reaction with copper(II) ions confirmed that Mn2-PhDTA2 has an ideal kinetic inertness with a dissociation half-life of approximately 10.4 h under physiological conditions. In the variable-temperature 17O NMR study, both Mn-PhDTA and Mn2-PhDTA2 demonstrated a similar estimated q close to 1, indicating the formation of monohydrated complexes with each manganese(II) ion. In addition, Mn2-PhDTA2 demonstrated a superior contrast enhancement to Mn-PhDTA in in vivo vascular and hepatic MRI and can be rapidly cleared through a dual hepatic and renal excretion pattern. The hepatic uptake mechanism of Mn2-PhDTA2 mediated by SLC39A14 was validated in cellular uptake studies.


Contrast Media , Liver , Magnetic Resonance Imaging , Manganese , Manganese/chemistry , Liver/diagnostic imaging , Liver/metabolism , Magnetic Resonance Imaging/methods , Animals , Contrast Media/chemistry , Contrast Media/chemical synthesis , Humans , Cation Transport Proteins/metabolism , Cation Transport Proteins/chemistry , Mice , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis
3.
Cereb Cortex ; 34(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38706137

Schizophrenia has been considered to exhibit sex-related clinical differences that might be associated with distinctly abnormal brain asymmetries between sexes. One hundred and thirty-two antipsychotic-naïve first-episode patients with schizophrenia and 150 healthy participants were recruited in this study to investigate whether cortical asymmetry would exhibit sex-related abnormalities in schizophrenia. After a 1-yr follow-up, patients were rescanned to obtain the effect of antipsychotic treatment on cortical asymmetry. Male patients were found to show increased lateralization index while female patients were found to exhibit decreased lateralization index in widespread regions when compared with healthy participants of the corresponding sex. Specifically, the cortical asymmetry of male and female patients showed contrary trends in the cingulate, orbitofrontal, parietal, temporal, occipital, and insular cortices. This result suggested male patients showed a leftward shift of asymmetry while female patients showed a rightward shift of asymmetry in these above regions that related to language, vision, emotion, and cognition. Notably, abnormal lateralization indices remained stable after antipsychotic treatment. The contrary trends in asymmetry between female and male patients with schizophrenia together with the persistent abnormalities after antipsychotic treatment suggested the altered brain asymmetries in schizophrenia might be sex-related disturbances, intrinsic, and resistant to the effect of antipsychotic therapy.


Antipsychotic Agents , Cerebral Cortex , Functional Laterality , Magnetic Resonance Imaging , Schizophrenia , Sex Characteristics , Humans , Female , Male , Schizophrenia/drug therapy , Schizophrenia/pathology , Schizophrenia/diagnostic imaging , Schizophrenia/physiopathology , Adult , Cerebral Cortex/diagnostic imaging , Young Adult , Antipsychotic Agents/therapeutic use , Functional Laterality/physiology , Adolescent , Brain Mapping
5.
Neurol Sci ; 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38653915

OBJECTIVE: To analyze the local functional activity and connectivity features of the brain associated with drug response inpatients newly diagnosed with epilepsy (NDE) who are naïve to anti-seizure medication (ASM). METHODS: Recruited patients, underwent functional magnetic resonance imaging at baseline, and were assigned to the well-controlled (WC, n = 28) or uncontrolled (UC, n = 11) groups based on their response to ASM. Healthy participants were included in the control group (HC, n = 29). The amplitudes of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) were used to measure local functional activity, and voxel-wise degree centrality (DC) and seed-based functional connectivity (FC) were used to evaluate the connecting intensity of the brain areas. RESULTS: Compared to the HC and WC groups, the UC group had higher ALFF values in the left posterior central gyrus (PoCG.L) and left inferior temporal gyrus (ITG.L) and higher DC in the bilateral PoCG (Gaussian random field correction, voxel-level P < 0.001, and cluster-level P < 0.05). Both PoCG and ITG.L in the UC group showed stronger FC with multiple brain regions, mainly located in the occipital and temporal lobes, compared to the HC or WC group, while the WC group showed decreased or similar FC compared to the HC group. INTERPRETATION: Excessive enhancement of brain functional activity or connecting intensity in ASM-naïve patients with NDE may be associated with a higher risk of poor drug response.

6.
Cereb Cortex ; 34(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38642107

Glioma is a systemic disease that can induce micro and macro alternations of whole brain. Isocitrate dehydrogenase and vascular endothelial growth factor are proven prognostic markers and antiangiogenic therapy targets in glioma. The aim of this study was to determine the ability of whole brain morphologic features and radiomics to predict isocitrate dehydrogenase status and vascular endothelial growth factor expression levels. This study recruited 80 glioma patients with isocitrate dehydrogenase wildtype and high vascular endothelial growth factor expression levels, and 102 patients with isocitrate dehydrogenase mutation and low vascular endothelial growth factor expression levels. Virtual brain grafting, combined with Freesurfer, was used to compute morphologic features including cortical thickness, LGI, and subcortical volume in glioma patient. Radiomics features were extracted from multiregional tumor. Pycaret was used to construct the machine learning pipeline. Among the radiomics models, the whole tumor model achieved the best performance (accuracy 0.80, Area Under the Curve 0.86), while, after incorporating whole brain morphologic features, the model had a superior predictive performance (accuracy 0.82, Area Under the Curve 0.88). The features contributed most in predicting model including the right caudate volume, left middle temporal cortical thickness, first-order statistics, shape, and gray-level cooccurrence matrix. Pycaret, based on morphologic features, combined with radiomics, yielded highest accuracy in predicting isocitrate dehydrogenase mutation and vascular endothelial growth factor levels, indicating that morphologic abnormalities induced by glioma were associated with tumor biology.


Brain Neoplasms , Glioma , Humans , Vascular Endothelial Growth Factor A/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Isocitrate Dehydrogenase/genetics , Magnetic Resonance Imaging , Glioma/diagnostic imaging , Glioma/genetics , Brain/diagnostic imaging , Brain/pathology , Mutation , Retrospective Studies
7.
Addict Biol ; 29(4): e13394, 2024 Apr.
Article En | MEDLINE | ID: mdl-38627958

Individuals with methamphetamine use disorder (MUD) often experience anxiety and depressive symptoms during abstinence, which can worsen the likelihood of relapse. Thus, it is essential to understand the neuro-mechanism behind methamphetamine use and its associated emotional withdrawal symptoms in order to develop effective clinical strategies. This study aimed to evaluate associations between emotional withdrawal symptoms and structural covariance networks (SCNs) based on cortical thickness (CTh) across the brain. The CTh measures were obtained from Tl-weighted MRI data from a sample of 48 males with MUD during abstinence and 48 male healthy controls. The severity of anxiety and depressive symptoms was assessed by the Hamilton Anxiety Scale (HAMA) and depression (HAMD) scales. Two important nodes belonging to the brain reward system, the right rostral anterior cingulate cortex (rACC) and medial prefrontal cortex (medPFC), were selected as seeds to conduct SCNs and modulation analysis by emotional symptoms. MUDs showed higher structural covariance between the right rACC and regions in the dorsal attention, right frontoparietal, auditory, visual and limbic networks. They also displayed higher structural covariance between the right medPFC and regions in the limbic network. Moreover, the modulation analysis showed that higher scores on HAMA were associated with increased covariance between the right rACC and the left parahippocampal and isthmus cingulate cortex in the default mode network. These outcomes shed light on the complex neurobiological mechanisms underlying methamphetamine use and its associated emotional withdrawal symptoms and may provide new insights into the development of effective treatments for MUD.


Emotions , Substance Withdrawal Syndrome , Humans , Male , Brain/diagnostic imaging , Anxiety/diagnostic imaging , Magnetic Resonance Imaging , Brain Mapping , Substance Withdrawal Syndrome/diagnostic imaging
8.
Article En | MEDLINE | ID: mdl-38629717

BACKGROUND: The COVID-19 pandemic has caused some individuals to experience vicarious traumatization (VT), an adverse psychological reaction to those who are primarily traumatized, which may negatively impact one's mental health and well-being and has been demonstrated to vary with personal trauma history. The neural mechanism of VT and how past trauma history affects current VT remain largely unknown. This study aimed to identify neurobiological markers that track individual differences in VT and reveal the neural link between childhood cumulative trauma (CCT) and VT. METHODS: We used structural and resting-state functional magnetic resonance imaging before the pandemic to identify prospective brain markers for COVID-related VT by correlating individuals' VT levels during the pandemic with the gray matter volume (GMV) and seed-based resting-state functional connectivity (RSFC) and examined how these brain markers linked CCT to VT in a sample of general young adults (N = 115/100). RESULTS: Whole-brain GMV-behavior correlation analysis showed that VT was positively associated with GMV in the right dorsolateral prefrontal gyrus (DLPFC). Using the cluster derived from the GMV-behavior correlation analysis as the seed region, we further revealed that the RSFC between the right DLPFC and right precuneus was negatively associated with VT. Importantly, the right DLPFC volume and DLPFC-precuneus RSFC mediated the effect of CCT on VT. These findings remained unaffected by factors such as family socioeconomic status, other stressful life events, and general mental health. CONCLUSIONS: Overall, our study presents structural and functional brain markers for VT and highlights these brain-based markers as a potential neural mechanism linking CCT to COVID-related VT, which has implications for treating and preventing the development of trauma-related mental disorders.

9.
Adv Mater ; : e2400582, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38477381

The effects of dendron side chains in polymeric conjugates on tumor penetration and antigen presentation are systematically examined. Three polymer-gemcitabine (Gem) conjugates (pG0-Gem, pG1-Gem, pG2-Gem) are designed and prepared. The pG2-Gem conjugate uniquely binds to the mitochondria of tumor cells, thus regulating mitochondrial dynamics. The interaction between the pG2-Gem conjugate and the mitochondria promotes great penetration and accumulation of the conjugate at the tumor site, resulting in pronounced antitumor effects in an animal model. Such encouraging therapeutic effects can be ascribed to immune modulation since MHC-1 antigen presentation is significantly enhanced due to mitochondrial fusion and mitochondrial metabolism alteration after pG2-Gem treatment. Crucially, the drug-free dendronized polymer, pG2, is identified to regulate mitochondrial dynamics, and the regulation is independent of the conjugated Gem. Furthermore, the combination of pG2-Gem with anti-PD-1 antibody results in a remarkable tumor clearance rate of 87.5% and a prolonged survival rate of over 150 days, demonstrating the potential of dendronized polymers as an innovative nanoplatform for metabolic modulation and synergistic tumor immunotherapy.

10.
Adv Mater ; : e2403588, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38490170

A low-generation lysine dendrimer, SPr-G2, responds to intracellular glutathione to initiate bioorthogonal in situ polymerization, resulting in the formation of large assemblies in mouse breast cancer cells. The intracellular large assemblies of SPr-G2 can interact with lysosomes to induce lysosome expansion and enhance lysosomal membrane permeabilization, leading to major histocompatibility complex class I upregulation on tumor cell surfaces and ultimately tumor cell death. Moreover, the use of the SPr-G2 dendrimer to conjugate the chemotherapeutic drug, camptothecin (CPT), can boost the therapeutic potency of CPT. Excellent antitumor effects in vitro and in vivo are obtained from the combinational treatment of the SPr-G2 dendrimer and CPT. This combinational effect also enhances antitumor immunity through promoting activation of cytotoxic T cells in tumor tissues and maturation of dendritic cells. This study can shed new light on the development of peptide dendritic agents for cancer therapy.

11.
Adv Mater ; : e2401304, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38469918

The dense extracellular matrix (ECM) in solid tumors, contributed by cancer-associated fibroblasts (CAFs), hinders penetration of drugs and diminishes their therapeutic outcomes. A sequential treatment strategy of remodeling the ECM via a CAF modifier (dasatinib, DAS) is proposed to promote penetration of an immunogenic cell death (ICD) inducer (epirubicin, Epi) via apoptotic vesicles, ultimately enhancing the treatment efficacy against breast cancer. Dendritic poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA)-based nanomedicines (poly[OEGMA-Dendron(G2)-Gly-Phe-Leu-Gly-DAS] (P-DAS) and poly[OEGMA-Dendron(G2)-hydrazone-Epi] (P-Epi)) are developed for sequential delivery of DAS and Epi, respectively. P-DAS reprograms CAFs to reduce collagen by downregulating collagen anabolism and energy metabolism, thereby reducing the ECM deposition. The regulated ECM can enhance tumor penetration of P-Epi to strengthen its ICD effect, leading to an amplified antitumor immune response. In breast cancer-bearing mice, this approach alleviates the ECM barrier, resulting in reduced tumor burden and increased cytotoxic T lymphocyte infiltration, and more encouragingly, synergizes effectively with anti-programmed cell death 1 (PD-1) therapy, significantly inhibiting tumor growth and preventing lung metastasis. Furthermore, systemic toxicity is barely detectable after sequential treatment with P-DAS and P-Epi. This approach opens a new avenue for treating desmoplastic tumors by metabolically targeting CAFs to overcome the ECM barrier.

12.
J Med Chem ; 67(6): 5011-5031, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38450627

Effective vascular and hepatic enhancement and better safety are the key drivers for exploring gadolinium-free hepatobiliary contrast agents. Herein, a facile strategy proposes that the high lipophilicity may be favorable to enhancing sequentially vascular and hepatobiliary signal intensity based on the structure-activity relationship that both hepatic uptake and interaction with serum albumins partly depend on lipophilicity. Therefore, 11 newly synthesized derivatives of manganese o-phenylenediamine-N,N,N',N'-tetraacetic acid (MnLs) were evaluated as vascular and hepatobiliary agents. The maximum signal intensities of the heart, liver, and kidneys were strongly correlated with log P, a key indicator of lipophilicity. The most lipophilic agent, MnL6, showed favorable relaxivity when binding with serum albumin, good vascular enhancement, rapid excretion, and reliable hepatobiliary phases comparable to a classic hepatobiliary agent, gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) for in vivo liver tumor imaging. Inhibition experiments confirmed the hepatic targeting of MnL6 is mediated by organic anion-transporting polypeptides.


Contrast Media , Liver Neoplasms , Humans , Contrast Media/metabolism , Manganese , Gadolinium DTPA/metabolism , Liver/metabolism , Liver Neoplasms/pathology , Magnetic Resonance Imaging/methods
13.
Psychol Med ; : 1-9, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38505948

BACKGROUND: Epigenetic changes are plausible molecular sources of clinical heterogeneity in schizophrenia. A subgroup of schizophrenia patients with elevated inflammatory or immune-dysregulation has been reported by previous studies. However, little is known about epigenetic changes in genes related to immune activation in never-treated first-episode patients with schizophrenia (FES) and its consistency with that in treated long-term ill (LTS) patients. METHODS: In this study, epigenome-wide profiling with a DNA methylation array was applied using blood samples of both FES and LTS patients, as well as their corresponding healthy controls. Non-negative matrix factorization (NMF) and k -means clustering were performed to parse heterogeneity of schizophrenia, and the consistency of subtyping results from two cohorts. was tested. RESULTS: This study identified a subtype of patients in FES participants (47.5%) that exhibited widespread methylation level alterations of genes enriched in immune cell activity and a significantly higher proportion of neutrophils. This clustering of FES patients was validated in LTS patients, with high correspondence in epigenetic and clinical features across two cohorts. CONCLUSIONS: In summary, this study demonstrated a subtype of schizophrenia patients across both FES and LTS cohorts, defined by widespread alterations in methylation profile of genes related to immune function and distinguishing clinical features. This finding illustrates the promise of novel treatment strategies targeting immune dysregulation for a subpopulation of schizophrenia patients.

14.
J Affect Disord ; 354: 173-180, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38492647

BACKGROUND: The hippocampus is a crucial brain structure in etiological models of major depressive disorder (MDD). It remains unclear whether sex differences in the incidence and symptoms of MDD are related to differential illness-associated brain alterations, including alterations in the hippocampus. This study investigated divergent the effects of sex on hippocampal subfield alterations in drug-naive patients with MDD. METHODS: High-resolution structural MR images were obtained from 144 drug-naive individuals with MDD early in their illness course and 135 age- and sex-matched healthy controls (HCs). Hippocampal subfields were segmented using FreeSurfer software and analyzed in terms of both histological subfields (CA1-4, dentate gyrus, etc.) and more integrative larger functional subregions (head, body and tail). RESULTS: We observed a significant overall reduction in hippocampal volume in MDD patients, with deficits more prominent deficits in the posterior hippocampus. Differences in anatomic alterations between male and female patients were observed in the CA1-head, presubiculum-body and fimbria in the left hemisphere. Exploratory analyses revealed different patterns of clinical and memory function correlations with histological subfields and functional subregions between male and female patients primarily in the hippocampal head and body. LIMITATIONS: This cross-sectional study cannot clarify the causality of hippocampal alterations or their association with illness risk or onset. CONCLUSIONS: These findings represent the first reported sex-specific alterations in hippocampal histological subfields in patients with MDD early in the illness course prior to treatment. Sex-specific hippocampal alterations may contribute to diverse sex differences in the clinical presentation of MDD.


Depressive Disorder, Major , Humans , Male , Female , Depressive Disorder, Major/drug therapy , Cross-Sectional Studies , Magnetic Resonance Imaging/methods , Organ Size , Hippocampus/diagnostic imaging , Hippocampus/pathology
15.
BMC Med ; 22(1): 92, 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38433204

BACKGROUND: Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are neurodevelopmental disorders with overlapping behavioral features and genetic etiology. While brain cortical thickness (CTh) alterations have been reported in ASD and ADHD separately, the degree to which ASD and ADHD are associated with common and distinct patterns of CTh changes is unclear. METHODS: We searched PubMed, Web of Science, Embase, and Science Direct from inception to 8 December 2023 and included studies of cortical thickness comparing youth (age less than 18) with ASD or ADHD with typically developing controls (TDC). We conducted a comparative meta-analysis of vertex-based studies to identify common and distinct CTh alterations in ASD and ADHD. RESULTS: Twelve ASD datasets involving 458 individuals with ASD and 10 ADHD datasets involving 383 individuals with ADHD were included in the analysis. Compared to TDC, ASD showed increased CTh in bilateral superior frontal gyrus, left middle temporal gyrus, and right superior parietal lobule (SPL) and decreased CTh in right temporoparietal junction (TPJ). ADHD showed decreased CTh in bilateral precentral gyri, right postcentral gyrus, and right TPJ relative to TDC. Conjunction analysis showed both disorders shared reduced TPJ CTh located in default mode network (DMN). Comparative analyses indicated ASD had greater CTh in right SPL and TPJ located in dorsal attention network and thinner CTh in right TPJ located in ventral attention network than ADHD. CONCLUSIONS: These results suggest shared thinner TPJ located in DMN is an overlapping neurobiological feature of ASD and ADHD. This alteration together with SPL alterations might be related to altered biological motion processing in ASD, while abnormalities in sensorimotor systems may contribute to behavioral control problems in ADHD. The disorder-specific thinner TPJ located in disparate attention networks provides novel insight into distinct symptoms of attentional deficits associated with the two neurodevelopmental disorders. TRIAL REGISTRATION: PROSPERO CRD42022370620. Registered on November 9, 2022.


Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Neurodevelopmental Disorders , Humans , Adolescent , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Autism Spectrum Disorder/diagnostic imaging , Neurobiology
16.
Nat Commun ; 15(1): 2221, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38472252

Artificial intelligence provides an opportunity to try to redefine disease subtypes based on similar pathobiology. Using a machine-learning algorithm (Subtype and Stage Inference) with cross-sectional MRI from 296 individuals with focal epilepsy originating from the temporal lobe (TLE) and 91 healthy controls, we show phenotypic heterogeneity in the pathophysiological progression of TLE. This study was registered in the Chinese Clinical Trials Registry (number: ChiCTR2200062562). We identify two hippocampus-predominant phenotypes, characterized by atrophy beginning in the left or right hippocampus; a third cortex-predominant phenotype, characterized by hippocampus atrophy after the neocortex; and a fourth phenotype without atrophy but amygdala enlargement. These four subtypes are replicated in the independent validation cohort (109 individuals). These subtypes show differences in neuroanatomical signature, disease progression and epilepsy characteristics. Five-year follow-up observations of these individuals reveal differential seizure outcomes among subtypes, indicating that specific subtypes may benefit from temporal surgery or pharmacological treatment. These findings suggest a diverse pathobiological basis underlying focal epilepsy that potentially yields to stratification and prognostication - a necessary step for precise medicine.


Epilepsy, Temporal Lobe , Humans , Artificial Intelligence , Cross-Sectional Studies , Brain , Hippocampus/pathology , Magnetic Resonance Imaging/methods , Machine Learning , Atrophy/pathology
17.
Adv Mater ; 36(18): e2311500, 2024 May.
Article En | MEDLINE | ID: mdl-38299748

The application of nanomedicines for glioblastoma (GBM) therapy is hampered by the blood-brain barrier (BBB) and the dense glioblastoma tissue. To achieve efficient BBB crossing and deep GBM penetration, this work demonstrates a strategy of active transcellular transport of a mitochondrion-disturbing nanomedicine, pGBEMA22-b-pSSPPT9 (GBEPPT), in the GBM tissue through mitocytosis. GBEPPT is computer-aided designed and prepared by self-assembling a conjugate of an amphiphilic block polymer and a drug podophyllotoxin (PPT). When GBEPPT is delivered to the tumor site, overexpressed γ-glutamyl transpeptidase (GGT) on the brain-blood endothelial cell, or the GBM cell triggered enzymatic hydrolysis of γ-glutamylamide on GBEPPT to reverse its negative charge to positive. Positively charged GBEPPT rapidly enter into the cell and target the mitochondria. These GBEPPT disturb the homeostasis of mitochondria, inducing mitocytosis-mediated extracellular transport of GBEPPT to the neighboring cells via mitosomes. This intracellular-to-intercellular delivery cycle allows GBEPPT to penetrate deeply into the GBM parenchyma, and exert sustainable action of PPT released from GBEPPT on the tumor cells along its penetration path at the tumor site, thus improving the anti-GBM effect. The process of mitocytosis mediated by the mitochondrion-disturbing nanomedicine may offer great potential in enhancing drug penetration through malignant tissues, especially poorly permeable solid tumors.


Glioblastoma , Mitochondria , Polymers , Mitochondria/metabolism , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Cell Line, Tumor , Polymers/chemistry , Animals , Blood-Brain Barrier/metabolism , Podophyllotoxin/chemistry , Podophyllotoxin/pharmacology , Mice , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , gamma-Glutamyltransferase/metabolism , Drug Carriers/chemistry
18.
Cereb Cortex ; 34(2)2024 01 31.
Article En | MEDLINE | ID: mdl-38342683

Postictal generalized electroencephalographic suppression is a possible electroencephalographic marker for sudden unexpected death in epilepsy. We aimed to investigate the cortical surface area abnormalities in epilepsy patients with postictal generalized electroencephalographic suppression. We retrospectively included 30 epilepsy patients with postictal generalized electroencephalographic suppression (PGES+), 21 epilepsy patients without postictal generalized electroencephalographic suppression (PGES-), and 30 healthy controls. Surface-based analysis on high-resolution T1-weighted images was conducted and cortical surface areas were compared among the three groups, alongside correlation analyses with seizure-related clinical variables. Compared with PGES- group, we identified reduced surface area in the bilateral insula with more extensive distribution in the right hemisphere in PGES+ group. The reduced right insular surface area was associated with younger seizure-onset age. When compared with healthy controls, PGES- group presented reduced surface area in the left caudal middle frontal gyrus; PGES+ group presented more widespread surface area reductions in the right posterior cingulate gyrus, left postcentral gyrus, middle frontal gyrus, and middle temporal gyrus. Our results suggested cortical microstructural impairment in patients with postictal generalized electroencephalographic suppression. The significant surface area reductions in the insular cortex supported the autonomic network involvement in the pathology of postictal generalized electroencephalographic suppression, and its right-sided predominance suggested the potential shared abnormal brain network for postictal generalized electroencephalographic suppression and sudden unexpected death in epilepsy.


Epilepsy , Sudden Unexpected Death in Epilepsy , Humans , Retrospective Studies , Epilepsy/diagnostic imaging , Electroencephalography/methods , Seizures , Death, Sudden
19.
J Adolesc Health ; 74(5): 941-949, 2024 May.
Article En | MEDLINE | ID: mdl-38416102

PURPOSE: Major depressive disorder (MDD) tends to emerge during adolescence, but the neurobiology of adolescent MDD is still poorly understood. This study aimed to explore the topological organization of white matter structural networks and the relationship between structural and functional connectivity in adolescent MDD. METHODS: Structural and functional magnetic resonance imaging data were acquired from 94 first-episode drug-naïve adolescent MDD patients and 78 healthy adolescents. Whole brain structural and functional brain networks were constructed for each subject. Then, the topological organization of structural brain networks and the coupling strength between structural and functional connectivity were analyzed. RESULTS: Compared with controls, adolescent MDD patients showed disrupted small-world, rich-club, and modular organizations. Nodal centralities in the medial part of bilateral superior frontal gyrus, bilateral hippocampus, right superior occipital gyrus, right angular gyrus, bilateral precuneus, left caudate nucleus, bilateral putamen, right superior temporal gyrus, and right temporal pole part of superior temporal gyrus were significantly lower in adolescent MDD patients compared with controls. The coupling strength between structural and functional connectivity was significantly lower in adolescent MDD patients compared with controls. DISCUSSION: Our findings suggest widespread disruption of structural brain networks and structural-functional decoupling in adolescent MDD, potentially leading to reduced network communication capacity.


Depressive Disorder, Major , Humans , Adolescent , Depressive Disorder, Major/diagnostic imaging , Brain/pathology , Prefrontal Cortex , Magnetic Resonance Imaging/methods
20.
Neurosci Biobehav Rev ; 159: 105583, 2024 Apr.
Article En | MEDLINE | ID: mdl-38365137

Evidence of whether the intrinsic functional connectivity of anterior cingulate cortex (ACC) and its subregions is altered in major depressive disorder (MDD) remains inconclusive. A systematic review and meta-analysis were therefore performed on the whole-brain resting-state functional connectivity (rsFC) studies using the ACC and its subregions as seed regions in MDD, in order to draw more reliable conclusions. Forty-four ACC-based rsFC studies were included, comprising 25 subgenual ACC-based studies, 11 pregenual ACC-based studies, and 17 dorsal ACC-based studies. Specific alterations of rsFC were identified for each ACC subregion in patients with MDD, with altered rsFC of subgenual ACC in emotion-related brain regions, of pregenual ACC in sensorimotor-related regions, and of dorsal ACC in cognition-related regions. Furthermore, meta-regression analysis revealed a significant negative correlation between the pgACC-caudate hypoconnectivity and percentage of female patients in the study cohort. This meta-analysis provides robust evidence of altered intrinsic functional connectivity of the ACC subregions in MDD, which may hold relevance to understanding the origin of, and treating, the emotional, sensorimotor and cognitive dysfunctions that are often observed in these patients.


Depressive Disorder, Major , Gyrus Cinguli , Humans , Female , Gyrus Cinguli/diagnostic imaging , Depressive Disorder, Major/diagnostic imaging , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging , Brain
...